访问量:   最后更新时间:--

冯增喜

硕士生导师
教师姓名:冯增喜
教师拼音名称:fengzengxi
所在单位:建筑设备科学与工程学院
职务:建筑设备科学与工程学院副院长
学历:博士研究生
性别:男
学位:博士学位
职称:副教授
在职信息:在职
主要任职:西安建筑科技大学建科学院专业教师、副院长
其他任职:陕西省自动化学会智能建筑与楼宇自动化专业委员会副秘书长
毕业院校:西安建筑科技大学
所属院系:建筑设备科学与工程学院
学科:控制科学与工程    
其他联系方式

邮箱:

论文成果
A Small Object Detection Framework on UAV Images via Attentive Representation Learning and Attentional Feature Fusion
发布时间:2025-12-20    点击次数:

所属单位:建筑设备科学与工程学院

发表刊物:Signal Image and Video Processing

关键字:Small object detection · UAV images · Attention mechanism · Cross-scale feature fusion

摘要:Object detection in Unmanned Aerial Vehicle (UAV) images has diverse applications, leading to increasing research interest. Despite the success of detection in natural scenes, UAV images pose two unique challenges: the high prevalence of small objects and significant variations in object scales, limiting the performance of existing methods. To address these, we propose Att-YOLO, a novel small object detection model for UAV images, which improves YOLOv7 with attentive learning and attentional fusion. First, during feature extraction, we introduce an attentive representation learning module with a spatial attention mechanism to highlight foreground features and a channel attention module to reduce background noise. Second, we design an attentional feature fusion strategy to leverage multi-scale feature correlations, assigning dynamic weights to better integrate cross-layer information, which is crucial for handling scale variations. Third, to improve small object detection, we extend the Generalized Efficient Layer Aggregation Network (GELAN) with Swin Transformer blocks, enabling the model to capture both local and global features effectively. Additionally, Wise-IoU (WIoU) v3 is used as the bounding box regression loss to improve localization precision. Extensive experiments show that Att-YOLO achieves competitive performance with state-of-the-art methods, achieving a mean Average Precision (mAP) of 41.8% on the VisDrone2019 dataset and 28.2% on the UAVDT dataset, while maintaining superior AP50 and showing advantageous computational efficiency

第一作者:冯增喜

论文类型:期刊论文

卷号:19(14): 1235.

ISSN号:1863-1703

是否译文:

发表时间:2025-10-03