访问量:   最后更新时间:--

冯增喜

硕士生导师
教师姓名:冯增喜
教师拼音名称:fengzengxi
所在单位:建筑设备科学与工程学院
职务:建筑设备科学与工程学院副院长
学历:博士研究生
性别:男
学位:博士学位
职称:副教授
在职信息:在职
主要任职:西安建筑科技大学建科学院专业教师、副院长
其他任职:陕西省自动化学会智能建筑与楼宇自动化专业委员会副秘书长
毕业院校:西安建筑科技大学
所属院系:建筑设备科学与工程学院
学科:控制科学与工程    
其他联系方式

邮箱:

论文成果
A hybrid deep learning model based on Rime optimization and multi-head attention for cooling load prediction in public buildings
发布时间:2025-12-20    点击次数:

所属单位:建筑设备科学与工程学院

发表刊物:Energy

关键字:Cooling load prediction Large public building Bidirectional long short-term memory Multi-head self-attention mechanism Improving the rime optimization algorithm Deep learning

摘要:Accurate prediction of cooling load is a prerequisite for the control of air conditioning systems and is of great significance for energy saving in buildings. This study proposes a hybrid deep learning model (AHRIME-CNNBiLSTM-MHSA) based on Rime optimization and Multi-Head Attention for cooling load prediction in large public buildings. Firstly, an importance analysis of input features is conducted using random forests, and key features are selected to reduce the dimensionality of input feature parameters. Secondly, a hybrid deep learning model is established by integrating data extraction with Convolutional Neural Network (CNN), bidirectional learning of temporal features with Bidirectional Long Short-Term Memory (BiLSTM), and the mining of key information with the Multi-Head Self-Attention mechanism (MHSA). Based on this, the improved Adaptive Hybrid Rime Optimization algorithm (AHRIME) is employed to optimize the hybrid model, determining the AHRIME-CNNBiLSTM-MHSA model with the optimal combination of parameters. Finally, the performance of the proposed cooling load prediction model is validated using actual data by establishing control groups. The results indicate that CNN and MHSA can enhance the effectiveness of BiLSTM in processing information and improve prediction accuracy. AHRIME can obtain the optimal parameters of the model, thereby enhancing predictive performance.

第一作者:冯增喜

论文类型:期刊论文

卷号:2025: 139100

ISSN号:0360-5442

是否译文:

发表时间:2025-12-01