李晓伟
邮编:
邮箱:
影响因子:2.0
发表刊物:Journal of Advanced Transportation
摘要:This study conducts a comprehensive comparative analysis of regression-based multinomial models and artificial neural network models in intercity travel mode choices. The four intercity travel modes of airplane, high-speed rail (HSR), train, and express bus were used for analysis. Passengers’ activity data over the process of intercity travel were collected to develop the models. The standard multinomial logit (MNL) regression and Bayesian multinomial logit (BMNL) regression were compared with the radial basis function (RBF) and multilayer perceptron (MLP). The results show that MLP performs best in terms of predictive accuracy, followed by BMNL and MNL, and RBF is the least accurate. The performances of all models were examined against changes in data balance, and it was found that rebalancing can improve fitting performance while slightly reducing the predictive performance. This comparative study and its parameter estimation shed new light on the comparison of traditional and emerging models in travel behavior studies, and the findings can be used as heuristic guidance for all stakeholders.
合写作者:王玉婷,吴瑶,陈君,周继彪
第一作者:李晓伟
是否译文:否
发表时间:2021-01-01
收录刊物:SCI、EI