中文
Profile
VIEW MORE
教育背景: 2010/09-2015/06,西安建筑科技大学,建筑学院数字建筑专业,博士 2003/09-2006/06,西安建筑科技大学,信控学院计算机应用专业,硕士 1999/09-2003/07,西安建筑科技大学,信控学院计算机科学与技术专业,学士 工作经历: 2016/11至今,西安建筑科技大学,信息与控制工程学院计算机系,副教授 2009/11-2016/10,西安建筑科技大学,信息与控制工程学院计算机系,讲师 社会兼职: 陕西省计算机教育学会会员;陕西省图象图形学学会会员;中国图象图形学学会会员;陕西省电子学会图象图形工程专业委员会委员
李智杰
Associate Professor
Paper Publications
Graph Embedding Method based on Space Syntax and Improved K-Means Clustering
Release time:2024-08-09 Hits:
Affiliation of Author(s):
信息与控制工程学院
Journal:
Advanced Materials Research
Key Words:
中文关键字:结构模式识别;图嵌入;空间句法;K均值;拓扑;统计模式识别,英文关键字:structural pattern recognition; graph embedding; s
Abstract:
The main drawbacks of structural pattern recognition compared to statistical pattern recognition are the high computation complexity and fewer processing tools that are available in the domain. To bridge the gap between the structural and statistical pattern recognition, a new graph embedding method based on space syntax and improved K-means clustering is proposed. The present paper uses the space syntax theory to build quantitative description of the nodes’ topological features, and then combines the proposed topological features with non-topological features in other aspects of the domain to construct node feature set using an improved K-means clustering algorithm, and then maps the graph into vector space explicitly by a statistical approach. Thus SVM can be applied to achieve graph classification. The experimental results show that such an embedding method can achieve higher classification accuracy in different graph datasets.
Note:
李智杰
Co-author:
刘欣
First Author:
zhengpuliang,lichanghua,lizhijie
Indexed by:
Journal paper
Volume:
卷:1044-1045
Issue:
期:
Page Number:
页:1163-1168
Translation or Not:
no
Date of Publication:
2014-11-01

Pre One:多尺度特征融合的图嵌入方法