中文
Profile
VIEW MORE
教育背景: (1)1998.09年2002.07年:毕业于西安建筑科技大学,获得学士学位 (2)2002.09年2005.07年:毕业于西安建筑科技大学,获得硕士学位 (3)21008.09年2014.12年:毕业于西安交通大学,获得博士学位 工作经历: (1)2005年07月至今:西安建筑科技大学信息与控制工程学院,教师 (2)2016年03月2017年03月:美国俄亥俄州立大学,访问学者 (3)2012年09月2013年09月:东北大学,访问学者 社会兼职: (1)陕西省仪器仪表学会,理事 (2)陕西省自动化学会教育及普及委员会,委员
孟月波
Professor
Paper Publications
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction
Release time:2024-08-09 Hits:
Affiliation of Author(s):
信息与控制工程学院
Journal:
Journal of Central South University of Technology
Key Words:
中文关键字:Wavelet; Neural Network; Fuzzy C-Means Clustering;,英文关键字:Wavelet; Neural Network; Fuzzy C-Means Clustering;
Abstract:
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an Adaptive Wavelet Neural Network (AWNN) aerodynamic modeling method is proposed, based on Subset Kernel Principal Components Analysis (SKPCA) feature extraction. Firstly, by Fuzzy C-means clustering some samples were selected from the training sample set to constitute a sample subset. Then, the obtained samples subset was used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model was established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of another 6 methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.
Note:
孟月波
Co-author:
邹建华,甘旭升
First Author:
liuguanghui,mengyuebo
Indexed by:
Journal paper
Volume:
卷:20
Issue:
期:4
Page Number:
页:
Translation or Not:
no
Date of Publication:
2013-04-01

Pre One:编码_解码多尺度卷积神经网络人群计数方法