中文
Profile
VIEW MORE
教育背景: (1)1998.09年2002.07年:毕业于西安建筑科技大学,获得学士学位 (2)2002.09年2005.07年:毕业于西安建筑科技大学,获得硕士学位 (3)21008.09年2014.12年:毕业于西安交通大学,获得博士学位 工作经历: (1)2005年07月至今:西安建筑科技大学信息与控制工程学院,教师 (2)2016年03月2017年03月:美国俄亥俄州立大学,访问学者 (3)2012年09月2013年09月:东北大学,访问学者 社会兼职: (1)陕西省仪器仪表学会,理事 (2)陕西省自动化学会教育及普及委员会,委员
孟月波
Professor
Paper Publications
Research on WNN aerodynamic modeling from flight data based on improved PSO algorithm
Release time:2024-08-09 Hits:
Affiliation of Author(s):
信息与控制工程学院
Journal:
Neurocomputing
Key Words:
中文关键字:粒子群算法,气动力建模,英文关键字:PSO algorithm;aerodynamic modeling
Abstract:
To depict the aerodynamic characteristics of flight vehicle accurately, a Wavelet Neural Network (WNN) method, based on improved Particle Swarm Optimization (IPSO) algorithm, is proposed for aerodynamic modeling from flight data. First the multi-particle information share strategy and mutation operation are introduced into Simple PSO algorithm in order to improve the modeling capability of WNN, and then according to modeling flow the aerodynamic model from flight data for flight vehicles is established by WNN based on IPSO algorithm. Simulation results show that the method proposed has a good capability with features of precision, convergence and surmounting prematurity or local optimum, and is also effective and feasible for aerodynamic modeling from flight data.
Note:
孟月波
Co-author:
邹建华,甘旭升
First Author:
zhaoliang,mengyuebo
Indexed by:
Journal paper
Volume:
卷:
Issue:
期:
Page Number:
页:212~221
Translation or Not:
no
Date of Publication:
2012-04-01

Pre One:共享核空洞卷积与注意力引导FPN文本检测

Next One:基于人群密度估计的空调末端及新风量分级调控方法