EN

牛荻涛

教授  

个人信息 更多+
  • 教师拼音名称: niuditao
  • 所在单位: 土木工程学院
  • 学历: 硕士研究生
  • 性别: 男
  • 学位: 双学位
  • 在职信息: 在职
  • 主要任职: 兼任第13届国家自然科学基金委员会专家评审组成员ACI中国分会副理事长中国建筑学会村镇防灾专业委员会副主任委员中国土木工程学会工程质量分会理事中国土木工程学会混凝土耐久性专业委员会委员

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Application of Neural Network for Concrete Carbonation Depth

发布时间:2024-08-09
点击次数:
所属单位:
土木工程学院
发表刊物:
4th International Conference on the Durability of Concrete Structures
关键字:
中文关键字:carbonation depth, concrete, durability, neural ne,英文关键字:
摘要:
Concrete carbonation is one of the most significant causes of deterioration of reinforced concrete structures in atmospheric environment. However, current models based on the laboratory tests cannot predict carbonation depth accurately. In this paper, the BP neural network is optimized by the particle swarm optimization (PSO) algorithm to establish the model of the length of the partial carbonation zone for concrete. After simulation training, the improved model is applied to a concrete bridge for carbonation depth prediction. The results show that the improved model, which has faster a convergence rate, has a good ability in predicting the length of the partial carbonation zone of the reinforced concrete, and the predicted value matches the field-measured value very well, which provides scientific guidance to durability design, assessment, and life prediction for concrete structures.
备注:
牛荻涛
合写作者:
DitaoNiu,ZhenpingDong
第一作者:
牛荻涛
论文类型:
期刊论文
卷号:
卷:
期号:
期:
页面范围:
页:66-71
是否译文:
发表时间:
2014-07-01