Algebraic isomorphisms and strongly double triangle subspace lattices
发布时间:2024-08-09
点击次数:
- 所属单位:
- 理学院
- 发表刊物:
- Linear algebras and its applications
- 关键字:
- 中文关键字:代数同构;二秩算子;强双三角子空间格,英文关键字:Algebraic isomorphism,Rank two operator; Strongly
- 摘要:
- Let D={{0}, K,L,M,X} be a double triangle subspace lattice on a non-zero complex reflexive Banach space X. It is demonstrated that when the vector sum K+L is closed, every non-zero element S of AlgD is single if and only if S has rank two. Let D_11 and D_2 be double triangle subspace lattices on the Banach spaces X_1 and X_2, respectively. It is also shown that every algebraic isomorphism between AlgD_1 and AlgD_2 is quasi-spatial if the vector sum K^i+L^i is closed, where i=1,2.
- 合写作者:
- 吉国兴
- 第一作者:
- 庞永锋
- 论文类型:
- 期刊论文
- 卷号:
- 卷:
- 期号:
- 期:422
- 页面范围:
- 页:265-273
- 是否译文:
- 否
- 发表时间:
- 2007-05-01
- 上一条:某些CSL代数上的局部费导子
- 下一条:算子偏序的刻画及性质



