中文
Profile
VIEW MORE
沈玥,女,副教授,陕西榆林人,从2019年至2020年在西安建筑科技大学理学院数学系工作,2020年至今在大数据科学系工作。2010-2014年在内蒙古大学数学科学学院学习,获得数理学基地专业理学学士学位;2014-2019年在中国科学院数学与系统科学研究院硕博连读,获理学博士学位,专业为计算数学。2025-2026年在西安交通大学以国内访问学者身份访学一年。目前主要从事研究方向为偏微分方程约束最优控制问题的数值分析,有限元方法的误差估计以及收敛性分析以及基于神经网络方法求解偏微分方程,在Journal of Computational and Applied Mathematics、Numerical Mathematics:Theory, Methods and Applications、Computers & Mathematics with Applica...
沈玥
Associate Professor
Paper Publications
Decoupled mixed element methods for fourth order elliptic control problems with control constraints
Release time:2024-08-09 Hits:
Affiliation of Author(s):
理学院
Journal:
Numerical Mathematics-Theory Methods and Applications
Key Words:
Fourth order elliptic equation, optimal control problem, decoupled mixed element method, Lagrange element, nonconforming Crouzeix-Raviart element, a priori error estimates.
Abstract:
In this paper, we study the finite element methods for distributed optimal control problems governed by the biharmonic operator. Motivated from reducing the regularity of solution space, we use the decoupled mixed element method which was used to approximate the solution of biharmonic equation to solve the fourth order optimal control problems. Two finite element schemes, i.e., Lagrange conforming element combined with full control discretization and the nonconforming Crouzeix-Raviart element combined with variational control discretization, are used to discretize the decoupled optimal control system. The corresponding a priori error estimates are derived under appropriate norms which are then verified by extensive numerical experiments.
Co-author:
金昌
First Author:
Shen Yue
Indexed by:
Journal paper
Volume:
2/13/400-432
Translation or Not:
no
Date of Publication:
2020-05-10

Pre One:The Lagrange interpolation for He’s frequency formulation

Next One:A periodic solution of the fractional sine-Gordon equation arising in architectural engineering