中文
Profile
VIEW MORE
沈玥,女,副教授,陕西榆林人,从2019年至2020年在西安建筑科技大学理学院数学系工作,2020年至今在大数据科学系工作。2010-2014年在内蒙古大学数学科学学院学习,获得数理学基地专业理学学士学位;2014-2019年在中国科学院数学与系统科学研究院硕博连读,获理学博士学位,专业为计算数学。2025-2026年在西安交通大学以国内访问学者身份访学一年。目前主要从事研究方向为偏微分方程约束最优控制问题的数值分析,有限元方法的误差估计以及收敛性分析以及基于神经网络方法求解偏微分方程,在Journal of Computational and Applied Mathematics、Numerical Mathematics:Theory, Methods and Applications、Computers & Mathematics with Applica...
沈玥
Associate Professor
Paper Publications
Convergence of adaptive nonconforming finite element method for Stokes optimal control problems
Release time:2024-10-25 Hits:
Affiliation of Author(s):
理学院
Journal:
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Key Words:
Optimal control problem Stokes equations Control constraints Adaptive nonconforming finite element method Convergence and quasi-optimality
Abstract:
This paper aims at proving the convergence and quasi-optimality of an adaptive nonconforming finite element method for Stokes distributed control problems with pointwise control constraints. Nonconforming P1/P0 pair (Crouzeix–Raviart elements) and variational discretization are used to approximate the state equation and the control variable, respectively. A posteriori error estimates with upper and lower bounds are first derived for the state and adjoint variables. Then we prove the contraction property for the sum of the energy error of the state and adjoint state and the scaled error estimator on two consecutive adaptive meshes. The resulting linear convergence is finally used to show the quasi-optimal convergence rate of the adaptive algorithm. Additionally, some numerical results are provided to support our theoretical analysis
Co-author:
龚伟,严宁宁
First Author:
Shen Yue
Indexed by:
Journal paper
Volume:
412
ISSN No.:
0377-0427
Translation or Not:
no
Date of Publication:
2022-10-01

Pre One:Nonlinear vibration with discontinuities in a fractal space: its variational formulation and periodic property

Next One:Mixed Virtual Element Approximation of a Fourth Order Optimal Control Problem