Low-Rank Representation for Incomplete Data
发布时间:2024-08-09
点击次数:
- 所属单位:
- 理学院
- 发表刊物:
- Mathematical Problems in Engineering
- 关键字:
- 中文关键字:低秩矩阵恢复,英文关键字:Low-rank matrix recovery
- 摘要:
- Low-rank matrix recovery (LRMR) has been becoming an increasingly popular technique for analyzing data with missing entries, grosscorruptions,andoutliers.AsasignificantcomponentofLRMR,themodeloflow-rankrepresentation(LRR)seeksthelowest- rankrepresentationamongallsamples anditisrobustforrecovering subspacestructures.Thispaper attemptstosolvetheproblem ofLRRwithpartiallyobservedentries.Firstly,weconstructanonconvexminimizationbytakingthelowrankness,robustness,and incompletionintoconsideration.ThenweemploythetechniqueofaugmentedLagrangemultiplierstosolvetheproposedprogram. Finally, experimental results on synthetic and real-world datasets validate the feasibility and effectiveness of the proposed method.
- 备注:
- SCI
- 合写作者:
- 雍龙泉
- 第一作者:
- 郑秀云,杨威,史加荣
- 论文类型:
- 期刊论文
- 卷号:
- 卷:2014
- 期号:
- 期:
- 页面范围:
- 页:
- 是否译文:
- 否
- 发表时间:
- 2014-12-01