王海涛

副教授    硕士生导师

个人信息 更多+
  • 教师拼音名称: wanghaitao
  • 所在单位: 机电工程学院
  • 学历: 研究生(博士)毕业
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职

其他联系方式

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Fault Diagnosis Using Imbalanced Data of Rolling Bearings Based on a Deep Migration Model

发布时间:2024-11-07
点击次数:
所属单位:
机电工程学院
发表刊物:
IEEE ACCESS
关键字:
Ball bearings;deep learning;data models;data processing;fault diagnosis;feature extraction;feature detection;image classification;residual neural networks;transfer learning
摘要:
To address the problem that uneven sample distribution can affect the accuracy and stability of fault diagnosis outcomes, we propose a deep transfer learning-Res2Net-convolutional block attention mechanism model. Firstly, the deep migration technique is used to transfer weights of the imbalanced source domain samples to the balanced target domain, expanding the data samples. Secondly, in the feature extraction and detection phase, All eight residual blocks are embedded in convolution block attention to ensure that interference signals are suppressed and that the key fault features are retained. Multilayer feature fusion extracts faulty sample features from multiple residual blocks of the network, which are combined into the feature fusion layer by parallel splicing. Finally, this model is experimentally validated using two different bearing datasets, and the combined evaluation indexes of the new model under the severe imbalance condition are 95.80% and 95.85%, respectively, demonstrating the feasibility and excellent performance of the model.
第一作者:
王海涛
论文类型:
期刊论文
通讯作者:
张希恒
卷号:
12/5517-5533
ISSN号:
2169-3536
是否译文:
CN号:
2169-3536
发表时间:
2024-01-08