基于深度学习和最大相关最小冗余的火焰图像检测方法
发布时间:2024-08-09
点击次数:
- 所属单位:
- 信息与控制工程学院
- 发表刊物:
- 激光与光电子学进展
- 关键字:
- 图像处理;火焰检测;卷积神经网络;动态特征;最大相关最小冗余
- 摘要:
- 为了解决基于浅层特征的火焰识别模型对环境变化敏感且鲁棒性较低的问题,提出了一种基于卷积神经网 络串行特征融合模型与最大相关最小冗余(MRMR)的火焰图像检测方法。为了从有限样本集中训练卷积神经网 络获取更加全局性的特征,对使用预训练方法提取的火焰图像深层特征进行串行融合;再针对融合后的特征维度 高、冗余大且未包含动态特征的问题,利用MRMR特征选择算法,去除与火焰相关性低的特征,获得相关性高的串 行特征后与动态特征进行融合,得到最优子集的重构特征向量;最后通过支持向量机分类器完成对火焰目标的检 测。实验结果表明,所提方法具有良好的泛化能力,对火焰的检测效果较好。
- 第一作者:
- 卢英,胡燕,王慧琴
- 论文类型:
- 期刊论文
- 是否译文:
- 否
- 发表时间:
- 2020-05-25