DOI number:
10.13637/j.issn.1009-6094.2019.1686
Key Words:
安全管理工程;;风险评价;;偶发因素;;高斯混合模型;;概率神经网络
Abstract:
为了提高海底油气管道风险评价的准确率,保证管道安全运行,利用高斯混合模型(GMM)和概率神经网络(PNN)对管道进行风险评价。在传统PNN的基础上做出两点改进:一是改变PNN的结构模型,在原有网络结构上增加一个特征层,目的是通过线性变化的方式增强输入维度之间的联系;二是将全局单一参数改为在模式层采用GMM,并用随机梯度下降法对参数进行更新。考虑海底管道在偶发因素下的风险,将相关指标量化,利用GMM-PNN模型划分等级,然后与PNN模型、人工神经网络、支持向量机进行对比。结果表明,GMM-PNN模型对训练样本数量要求较低且准确率高于其他3种模型,能够更加准确地对海底管道进行风险等级评价。