中文
Profile
VIEW MORE
>>欢迎咨询报考2026年硕士/博士研究生<<        张新生(1978~),男,博士,教授(博导),管理学院副院长。2009年12月毕业于西安电子科技大学,获得博士学位。2010年10月晋升为副教授,佛罗里达大学访问学者(2013-2014),2016年12月晋升为教授,现在西安建筑科技大学管理学院从事教学和科研工作。近年来主持国家自然科学基金1项、国家社科基金后期资助项目1项,教育部人文社科规划项目1项,陕西省重点产业链项目1项,陕西省自然科学基金3项、陕西省社科基金2项、陕西省教育厅自然科学基金3项等,主持横向项目6项,并参与了多项课题的研究工作。主要研究方向包括:智能社会治理;管理智能决策与优化;能资环(能源、资源、环境)智能管理与优化...
zhangxinsheng
Professor
Paper Publications
Multimodal prototype fusion network for paper-cut image classification
Release time:2025-09-20 Hits:
Impact Factor:
4.9
DOI number:
10.1038/s40494-025-02036-8
Journal:
npj Heritage Science
Abstract:
This paper proposes a Multimodal Prototype Fusion Network (MPFN) to address challenges in paper-cut image classification, including artistic abstraction, imbalanced data, and unseen category adaptation. The framework introduces two variants: AMPFN, which dynamically fuses multimodal prototypes via cross-modal attention and residual learning, and IMPFN, a training-free model for rapid deployment. Leveraging CLIP for feature extraction, AMPFN achieves 90.71% accuracy (16-shot) on seen classes, while IMPFN attains 84.98% accuracy (16-shot) on unseen classes without training. Evaluations on paper-cut datasets and public benchmarks (PACS, ArtDL, CUB-200-2011) demonstrate superiority over existing methods. The approach mitigates data imbalance through n-shot prototypes and reduces computational costs via pre-trained features, proving robust in fine-grained and abstract art classification. This work offers a scalable solution for cultural heritage digitization and multimodal art analysis.
Note:
Zhang, X., Chen, D. & Qin, Y. Multimodal prototype fusion network for paper-cut image classification. npj Herit. Sci. 13, 462 (2025). https://doi.org/10.1038/s40494-025-02036-8
Indexed by:
Journal paper
Document Code:
462
Discipline:
Engineering
First-Level Discipline:
Computer Science and Technology
Document Type:
J
Volume:
13
Issue:
462
Page Number:
1-14
ISSN No.:
3059-3220
Translation or Not:
no
Date of Publication:
2025-01-01
Included Journals:
SCI
Links to published journals:
https://doi.org/10.1038/s40494-025-02036-8

Next One:融合输出关联和聚类图谱的突发舆情衍生主题发现