EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

基于LASSO-GWO-KELM的工业碳排放预测方法研究

发布时间:2025-09-07
点击次数:
DOI码:
10.13205/j.hjgc.202310018
发表刊物:
环境工程
关键字:
工业;;套索回归;;核极限学习机;;灰狼优化算法;;碳排放预测
摘要:
针对工业碳排放系统的总量预测问题,建立基于套索回归(LASSO)、灰狼优化算法(GWO)和核极限学习机(KELM)相结合的模型提高碳排放量预测精度。首先根据IPCC公式法与电热分摊法核算2000—2020年工业直接与间接碳排放量,运用STIRPAT模型选取国内生产总值、能源结构、固定资产投资等指标;然后通过灰色关联分析、LASSO回归模型筛选出7个显著影响因素;再接着对工业碳排放系统的参数数据进行预处理并输入至KELM模型,使用GWO算法优化KELM正则化系数(C)和核函数参数(γ);最后将预测结果集成汇总,并对比分析LASSO-GWO-KELM、LASSO-SSA-KELM、LASSO-SFO-KELM、LASSO-KELM和LASSO-ELM预测结果。结果显示:LASSO-GWO-KELM模型预测值与实际值拟合,其均方误差、平均绝对误差、均方根误差、平均绝对百分比误差分别为0.02%、1.09%、1.33%和1.17%,均优于其他模型,证明该模型能够更为准确地预测工业碳排放量,为我国尽早实现“双碳”目标提供参考。
卷号:
41
期号:
10
页面范围:
141-149
ISSN号:
1000-8942
是否译文:
发表时间:
2023-11-15