EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Multimodal prototype fusion network for paper-cut image classification

发布时间:2025-09-20
点击次数:
影响因子:
4.9
DOI码:
10.1038/s40494-025-02036-8
发表刊物:
npj Heritage Science
摘要:
This paper proposes a Multimodal Prototype Fusion Network (MPFN) to address challenges in paper-cut image classification, including artistic abstraction, imbalanced data, and unseen category adaptation. The framework introduces two variants: AMPFN, which dynamically fuses multimodal prototypes via cross-modal attention and residual learning, and IMPFN, a training-free model for rapid deployment. Leveraging CLIP for feature extraction, AMPFN achieves 90.71% accuracy (16-shot) on seen classes, while IMPFN attains 84.98% accuracy (16-shot) on unseen classes without training. Evaluations on paper-cut datasets and public benchmarks (PACS, ArtDL, CUB-200-2011) demonstrate superiority over existing methods. The approach mitigates data imbalance through n-shot prototypes and reduces computational costs via pre-trained features, proving robust in fine-grained and abstract art classification. This work offers a scalable solution for cultural heritage digitization and multimodal art analysis.
备注:
Zhang, X., Chen, D. & Qin, Y. Multimodal prototype fusion network for paper-cut image classification. npj Herit. Sci. 13, 462 (2025). https://doi.org/10.1038/s40494-025-02036-8
论文类型:
期刊论文
论文编号:
462
学科门类:
工学
一级学科:
计算机科学与技术
文献类型:
J
卷号:
13
期号:
462
页面范围:
1-14
ISSN号:
3059-3220
是否译文:
发表时间:
2025-01-01
收录刊物:
SCI
发布期刊链接:
https://doi.org/10.1038/s40494-025-02036-8