白燕

副教授    硕士生导师

个人信息 更多+
  • 教师拼音名称: baiyan
  • 所在单位: 理学院
  • 学历: 博士研究生
  • 性别: 女
  • 学位: 博士学位
  • 在职信息: 在职

其他联系方式

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

The analysis of combined prediction model of building energy consumption with grey theory and RBF neural network

发布时间:2024-08-09
点击次数:
所属单位:
理学院
发表刊物:
Advanced Materials Research
关键字:
中文关键字:建筑能耗;GM(1,1)模型;径向基神经网络,英文关键字:Building Energy Consumption;GM(1,1) Model;Radial B
摘要:
A kind of new combined modeling method with GM(1,1) and RBNN (Radial Basis Neural Network) is brought forward, according to the idea that the method of neural network can bring grey prediction model a good modified effect. Based on the analysis of the energy consumption data of the existing and the annually-increased building area, the GM(1,1) model was then constructed. And the RBF neural network was used for the model residual error revising. The simulation and experiment results show that the novel model is more effective than the common grey model.
备注:
白燕
合写作者:
蒋红梅
第一作者:
任庆昌,白燕
论文类型:
期刊论文
卷号:
卷:374-377
期号:
期:
页面范围:
页:90-93
是否译文:
发表时间:
2011-12-01