访问量:   最后更新时间:--

冯增喜

硕士生导师
教师姓名:冯增喜
教师拼音名称:fengzengxi
所在单位:建筑设备科学与工程学院
职务:建筑设备科学与工程学院副院长
学历:博士研究生
性别:男
学位:博士学位
职称:副教授
在职信息:在职
主要任职:西安建筑科技大学建科学院专业教师、副院长
其他任职:陕西省自动化学会智能建筑与楼宇自动化专业委员会副秘书长
毕业院校:西安建筑科技大学
所属院系:建筑设备科学与工程学院
学科:控制科学与工程    
其他联系方式

邮箱:

论文成果
An office building energy consumption forecasting model with dynamically combined residual error correction based on the optimal model
发布时间:2025-12-20    点击次数:

所属单位:建筑设备科学与工程学院

发表刊物:Energy Reports

关键字:Building energy forecasting Combination forecasting Residual error correction Support vector regression Optimal combination model

摘要:Accurate forecasting of energy consumption in office buildings is of great importance for optimal management of energy consumption and reduction of building energy consumption. A variety of combination forecasting models (FMs) have become the current research hotspots in the field of building energy consumption forecasting. For the problems of large systematic errors and poor generalization ability of existing combination FMs, this paper proposes a dynamic combination residual forecasting model (FM) with the optimal combination approach. Firstly, support vector regression (SVR) is selected as the basic FM, and the SVR residual errors are forecasted by the dynamic combination FM based on the weights, and the SVR forecast value is finally corrected. Further, the basis for the selection of the single FM in the combination model and the optimal number of combination terms are given by mathematical proof in this paper. A case study in Xi’an shows that the dynamic combined residual errors correction FM with the optimal number of terms proposed in this paper can reduce the mean absolute error (MAE) of the basic model from 1918.59 kW to 349.37 kW, the mean absolute percentage error (MAPE) from 15.80% to 2.96%, and the root mean square error (RMSE) from 2278.74 to 471.44.

第一作者:冯增喜

论文类型:期刊论文

卷号:8: 12442-12455

ISSN号:2352-4847

是否译文:

发表时间:2022-11-01