访问量:   最后更新时间:--

冯增喜

硕士生导师
教师姓名:冯增喜
教师拼音名称:fengzengxi
所在单位:建筑设备科学与工程学院
职务:建筑设备科学与工程学院副院长
学历:博士研究生
性别:男
学位:博士学位
职称:副教授
在职信息:在职
主要任职:西安建筑科技大学建科学院专业教师、副院长
其他任职:陕西省自动化学会智能建筑与楼宇自动化专业委员会副秘书长
毕业院校:西安建筑科技大学
所属院系:建筑设备科学与工程学院
学科:控制科学与工程    
其他联系方式

邮箱:

论文成果
Office building energy consumption forecast: Adaptive long short term memory networks driven by improved beluga whale optimization algorithm
发布时间:2025-12-20    点击次数:

所属单位:建筑设备科学与工程学院

发表刊物:JOURNAL OF BUILDING ENGINEERING

关键字:Long short-term memory networks Beluga whale optimization Building energy consumption Energy consumption forecasting

摘要:With the development of urbanization, buildings have become a major source of energy consumption. This research uses a data-driven approach to achieve accurate building energy consumption prediction by analyzing and modeling building energy consumption data. The model proposed in this paper uses improved beluga whale optimization algorithm (IBWO) to optimize long short-term memory networks (LSTM) for accurate energy consumption prediction. In order to enhance the ability of BWO in global search and local exploitation, a new method of dynamic adjustment of step factor as well as strategies such as nonlinear decreasing are introduced to improve BWO. For the first time, it is proposed to explore the accuracy of the number of hyper- parameters of LSTM on the prediction of energy consumption, and the improved beluga whale optimization algorithm is used to optimize the two, three, and four hyper-parameters of LSTM respectively. Then short-term prediction of historical energy consumption data of an office building in Xi’a is performed. Experiments show that the optimization of the four hyper parameters of LSTM using the IBWO of this paper can reduce the mean absolute error (MAE) of the pre-improvement model from 830.71 KW to 128.28 KW, the mean absolute percentage error (MAPE) from 12.32 % to 1.38 %, and the coefficient of variation (CV) from 7.5 % to 1.2 %.

第一作者:冯增喜

论文类型:期刊论文

卷号:91: 109612.

ISSN号:2352-7102

是否译文:

发表时间:2024-08-15