Personal Information

  • Master Tutor
  • (Professor)
  • Name (Pinyin):

    wanghuiqin
  • School/Department:

    信息与控制工程学院
  • Education Level:

    Postgraduate (Postdoctoral)
  • Gender:

    Female
  • Degree:

    Doctoral Degree in Engineering
  • Professional Title:

    Professor
  • Status:

    Employed
  • Academic Titles:

    信息与控制工程学院副院长、教授、博士生导师
  • Alma Mater:

    西安交通大学
  • Discipline:

    Information and Communication Engineering

Other Contact Information

  • OfficePhone:

  • Email:

结合蚁群算法的改进粗糙K均值聚类算法

  • Release time:2024-08-09
  • Hits:
  • Affiliation of Author(s):

    信息与控制工程学院
  • Journal:

    数据采集与处理
  • Key Words:

    聚类;K均值;蚁群算法;粗糙集;目标函数;
  • Abstract:

    粗糙集理论是一种处理边界对象不确定的有效方法。将粗糙集与K均值结合的粗糙K均值聚类算法,具有简单高效且可处理聚类边界元素的特点,但同时存在缺陷。针对粗糙K均值聚类算法对初始点敏感,经验权重设置忽略数据差异性,阈值设置不合理导致聚类结果波动性大的缺陷,本文提出结合蚁群算法的改进粗糙K均值聚类算法,改进的算法中使用蚁群算法中随机概率选择策略和信息素更新的正负反馈机制,以及采用动态调整算法阈值和相关权重的方法,对粗糙K均值聚类算法进行优化。最后采用UCI的Iris、Balance?scale和Wine数据集分别对算法进行实验。实验结果表明,改进后的粗糙K均值聚类算法得到的聚类结果准确率更高。
  • First Author:

    wanghuiqin
  • Indexed by:

    Journal paper
  • Correspondence Author:

    刘洋,张小红
  • Discipline:

    Engineering
  • Volume:

    中文核心期刊:341-348,8
  • ISSN No.:

    1004-9037
  • Translation or Not:

    no
  • Date of Publication:

    2019-03-15
Back
Top