中文
Profile
VIEW MORE
>>欢迎咨询报考2026年硕士/博士研究生<<        张新生(1978~),男,博士,教授(博导),管理学院副院长。2009年12月毕业于西安电子科技大学,获得博士学位。2010年10月晋升为副教授,佛罗里达大学访问学者(2013-2014),2016年12月晋升为教授,现在西安建筑科技大学管理学院从事教学和科研工作。近年来主持国家自然科学基金1项、国家社科基金后期资助项目1项,教育部人文社科规划项目1项,陕西省重点产业链项目1项,陕西省自然科学基金3项、陕西省社科基金2项、陕西省教育厅自然科学基金3项等,主持横向项目6项,并参与了多项课题的研究工作。主要研究方向包括:智能社会治理;管理智能决策与优化;能资环(能源、资源、环境)智能管理与优化...
zhangxinsheng
Professor
Paper Publications
Linguistic features of AI mis/disinformation and the detection limits of LLMs
Release time:2025-12-22 Hits:
Impact Factor:
15.7
DOI number:
10.1038/s41467-025-67145-1
Journal:
Nature Communications
Key Words:
large language models; mis/disinformation; computational linguistic; information governance
Abstract:
The persuasive capability of large language models (LLMs) in generating mis/disinformation is widely recognized, but the linguistic ambiguity of such content and inconsistent findings on LLM-based detection reveal unresolved risks in information governance. To address the lack of Chinese datasets, this study compiles two datasets of Chinese AI mis/disinformation generated by multi-lingual models involving deepfakes and cheapfakes. Through psycholinguistic and computational linguistic analyses, the quality modulation effects of eight language features (including sentiment, cognition, and personal concerns), along with toxicity scores and syntactic dependency distance differences, were discovered. Furthermore, key factors influencing zero-shot LLMs in comprehending and detecting AI mis/disinformation are examined. The results show that although implicit linguistic distinctions exist, the intrinsic detection capability of LLMs remains limited. Meanwhile, the quality modulation effects of AI mis/disinformation linguistic features may lead to the failure of AI mis/disinformation detectors. These findings highlight the major challenges of applying LLMs in information governance.
Indexed by:
Journal paper
Discipline:
Interdisciplinary
Document Type:
J
ISSN No.:
2041-1723
Translation or Not:
no
Date of Publication:
2025-01-01
Included Journals:
SCI
Links to published journals:
https://www.nature.com/articles/s41467-025-67145-1

Next One:Multimodal prototype fusion network for paper-cut image classification