EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 IEEE高级会员 CCF会员

其他联系方式

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

MCs Detection Approach Using Bagging and Boosting Based Twin Support Vector Machine

发布时间:2024-08-09
点击次数:
所属单位:
管理学院
发表刊物:
SMC2009
关键字:
中文关键字:—enseble learning,Boosting,feature extraction,英文关键字:—enseble learning,Boosting,feature extraction
摘要:
In this paper we discuss a new approach for the detection of clustered microcalcifications (MCs) in mammograms. MCs are an important early sign of breast cancer in women. Their accurate detection is a key issue in computer aided detection scheme. To improve the performance of detection, we propose a Bagging and Boosting based twin support vector machine (BB-TWSVM) to detect MCs. The algorithm is composed of three modules: the image pro- processing, the feature extraction component and the BB- TWSVM module. The ground truth of MCs in mammograms is assumed to be known as a priori. First each MCs is preprocessed by using a simple artifact removal filter and a well designed high-pass filter. Then the combined image feature extractors are employed to extract 164 image features. In the combined image features space, the MCs detection procedure is formulated as a supervised learning and classification problem, and the trained BB-TWSVM is used as a classifier to make decision for the presence of MCs or not. The experimental results of this study indicate the potential of the approach for computer-aided detection of breast cancer.
备注:
张新生
第一作者:
张新生
论文类型:
期刊论文
卷号:
卷:1
期号:
期:
页面范围:
页:5145-5150
是否译文:
发表时间:
2009-12-01