EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

基于KPCA-ALO-WLSSVM的埋地管道外腐蚀速率预测

发布时间:2025-09-07
点击次数:
DOI码:
10.13637/j.issn.1009-6094.2021.0275
发表刊物:
安全与环境学报
关键字:
安全工程;;埋地管道;;外腐蚀速率;;核主成分分析(KPCA);;蚁狮优化算法(ALO);;加权最小二乘支持向量机(WLSSVM)
摘要:
为提高埋地油气管道外腐蚀速率预测精度,建立了一种基于KPCA-ALO-WLSSVM的埋地管道外腐蚀速率预测模型。以沿川气东送管线所做埋片试验获取的数据为例,首先利用核主成分分析(KPCA)对管道外腐蚀影响因素进行处理,以重构的综合指标作为模型的输入值;然后利用加权最小二乘支持向量机(WLSSVM)对外腐蚀因素和速率进行仿真建模,并利用蚁狮优化算法(ALO)对WLSSVM建模中的参数进行寻优。结果表明:KPCA提取了累计贡献率为97.84%的3个主元,减化了建模过程的复杂性;所构建的ALO-WLSSVM外腐蚀速率预测模型的平均相对误差为4.390%,均方根误差为0.276,各项指标均优于其对比模型,证明了本模型具有更好的学习性和更高的拟合效果。
卷号:
22
期号:
04
页面范围:
1804-1812
ISSN号:
1009-6094
是否译文:
发表时间:
2021-05-10