EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

基于改进RFFS和GSA-SVR的长输油管道腐蚀深度预测研究

发布时间:2025-09-07
点击次数:
发表刊物:
系统工程理论与实践
关键字:
长输油管道;;腐蚀深度预测;;改进RFFS算法;;万有引力算法(GSA);;支持向量机(SVR)
摘要:
由于长输油管道腐蚀深度受整个外部土壤腐蚀环境、内部运输介质和其他未知因素的干扰。常常会使管道腐蚀数据出现异方差性以及非稳定性的问题,导致精确预测管道腐蚀深度十分困难.为了提高长输油管道腐蚀深度的预测精度,提出了基于改进RFFS和GSA-SVR的预测模型.首先利用改进RFFS算法提取长输油管道重要腐蚀影响因素作为预测指标,实现数据降维,以减少对预测结果的干扰;然后进行数据预处理,利用GSA对惩罚系数C和核函数参数g进行寻优,同时优选核函数和迭代次数t,使SVR达到全局搜索和局部搜索的最优,进而形成基于改进RFFS和GSA-SVR管道腐蚀深度预测模型;随后使用训练集训练模型,输入测试集进行预测,同时引入平均相对误差(MARE)和相对均方误差(RMSE)两个评价指标进行对比,建立数据表对模型精确度进行检验.实例结果表明:使用基于改进RFFS和GSA-SVR模型用于预测腐蚀深度与实际结果高度吻合,预测精度远高于其他预测模型.
卷号:
41
期号:
06
页面范围:
1598-1610
ISSN号:
1000-6788
是否译文:
发表时间:
2021-02-03