EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

An ALBERT-based TextCNN-Hatt hybrid model enhanced with topic knowledge for sentiment analysis of sudden-onset disasters

发布时间:2025-09-07
点击次数:
DOI码:
10.1016/j.engappai.2023.106136
发表刊物:
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
摘要:
Sudden-onset disasters put forward new requirements for on the state authorities' ability to analyze public opinion sentiment. However, traditional sentiment analysis methods ignore the contextual semantic relation-ships , out-of-vocabulary words , their computational resource utilization is excessive compared to their expected accuracy. In this paper, an ALBERT-based model combined with a text convolution neural network, a hierarchical attention mechanism and the latent Dirichlet allocation is proposed to create a hybrid model enhanced with topic knowledge for sentiment analysis of sudden-onset disasters. Weibo text data from a rainstorm disaster in China are used to evaluate the model's performance. Compared with the XLNet, DistilBERT and RoBERTa models, the experimental results demonstrate that the proposed approach is capable of achieving better performance by incorporating external topic knowledge into the language representation model to compensate for the limited vocabulary data.
论文类型:
期刊论文
卷号:
123
ISSN号:
0952-1976
是否译文:
发表时间:
2023-01-01
收录刊物:
SCI