EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

An advanced model integrating prompt tuning and dual-channel paradigm for enhancing public opinion sentiment classification

发布时间:2025-09-07
点击次数:
DOI码:
10.1016/j.compeleceng.2024.110047
发表刊物:
COMPUTERS & ELECTRICAL ENGINEERING
摘要:
Sentiment analysis of online comments is crucial for governments in managing public opinion effectively. However, existing sentiment models face challenges in balancing memory efficiency with predictive accuracy. To address this, we propose PRTB-BERT, a hybrid model that combines prompt tuning with a dual-channel approach. PRTB-BERT employs a streamlined soft prompt template for efficient training with minimal parameter updates, leveraging BERT to generate word embeddings from input text. To enhance performance, we integrate advanced TextCNN and BiLSTM networks, capturing both local features and contextual semantic information. Additionally, we introduce a residual self-attention (RSA) mechanism in TextCNN to improve information extraction. Extensive testing on four comment datasets evaluates PRTB-BERT's classification performance, memory usage, and the comparison between soft and hard prompt templates. Results show that PRTB-BERT improves accuracy while reducing memory consumption, with the optimized soft prompt template outperforming traditional hard prompts in predictive performance.
论文类型:
期刊论文
卷号:
123
ISSN号:
0045-7906
是否译文:
发表时间:
2024-01-01
收录刊物:
SCI