EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Imbalanced Text Sentiment Classification Based on Multi-Channel BLTCN-BLSTM Self-Attention

发布时间:2025-09-07
点击次数:
DOI码:
10.3390/s23042257
发表刊物:
SENSORS
摘要:
With the continuous expansion of the field of natural language processing, researchers have found that there is a phenomenon of imbalanced data distribution in some practical problems, and the excellent performance of most methods is based on the assumption that the samples in the dataset are data balanced. Therefore, the imbalanced data classification problem has gradually become a problem that needs to be studied. Aiming at the sentiment information mining of an imbalanced short text review dataset, this paper proposed a fusion multi-channel BLTCN-BLSTM self-attention sentiment classification method. By building a multi-channel BLTCN-BLSTM self-attention network model, the sample after word embedding processing is used as the input of the multi-channel, and after fully extracting features, the self-attention mechanism is fused to strengthen the sentiment to further fully extract text features. At the same time, focus loss rebalancing and classifier enhancement are combined to realize text sentiment predictions. The experimental results show that the optimal F1 value is up to 0.893 on the Chnsenticorp-HPL-10,000 corpus. The comparison and ablation of experimental results, including accuracy, recall, and F1-measure, show that the proposed model can fully integrate the weight of emotional feature words. It effectively improves the sentiment classification performance of imbalanced short-text review data.
论文类型:
期刊论文
卷号:
23
期号:
4
是否译文:
发表时间:
2023-01-01
收录刊物:
SCI