EN

张新生

教授   博士生导师  硕士生导师

个人信息 更多+
  • 教师英文名称: zhangxinsheng
  • 教师拼音名称: zhangxinsheng
  • 所在单位: 管理学院
  • 学历: 研究生(博士)毕业
  • 办公地点: 教学大楼828
  • 性别: 男
  • 学位: 博士学位
  • 在职信息: 在职
  • 主要任职: 西安建筑科技大学,管理学院,副院长
  • 其他任职: CNAIS理事 中国系统工程学会会员 陕西省电子学会图形图像专委会委员 CCF会员

其他联系方式

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

Pipeline risk big data intelligent decision-making system based on machine learning and situation awareness

发布时间:2025-09-07
点击次数:
DOI码:
10.1007/s00521-021-06738-5
发表刊物:
NEURAL COMPUTING & APPLICATIONS
摘要:
Underground pipelines are an indispensable part of urban public facilities. However, the frequent occurrence of pipeline accidents in recent years has not only brought great inconvenience to people's lives, but also affected people's lives and property safety to a certain extent. Therefore, timely treatment and treatment are very important. Preventing sudden underground pipeline accidents plays an important role in improving urban livability. This article studies pipeline risk big data intelligent decision-making systems based on machine learning and situational awareness. In this paper, by analyzing the application scope of gas leakage and diffusion models under different modes, leakage, diffusion, fire and explosion models are determined, and a combined model framework of leakage accident consequence system analysis is formed. The system uses the pipeline failure probability model and the pipeline failure consequence analysis model to determine the pipeline failure probability, the probability and the consequences of each accident; it uses the spatial analysis ability of GIS technology to determine the accident impact area and displays the impact area in graphics form. Through the effect verification of the test set, the prediction result of the SVR model based on the grid search parameter, the relative percentage error of the predicted value of each sample and the true value fluctuate is in the range of 4%-36%, and the amplitude is not very large. Most of the error values are approximately 13.56% of the MAPE value. The results show that the optimization method using grid search parameters can have better prediction performances.
论文类型:
期刊论文
卷号:
34
期号:
18
ISSN号:
0941-0643
是否译文:
发表时间:
2021-01-01